ソフトウェア開発の手順・チームでのソフトウェア開発

樋口さぶろお

龍谷大学理工学部数理情報学科

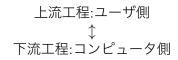
応用プログラミング☆実習 L14(2018-01-09 Tue)

最終更新: Time-stamp: "2018-01-09 Tue 07:37 JST hig"

今日の目標

- 世の中のソフトウェア開発手順を説明できる
- 世の中のチームでのソフトウェア開発方法を説明できる
- チーム内,チーム間でコミュニケーションしてソフトウェアを開発できる

http://hig3.net


大規模ソフトウェア開発手順I

ウォーターフォールと言われる古典的開発手法での開発手順を zip-server/client の例で言うと,

- システム要件定義 (基本計画)
 - ▶ (やらなかった) この程度の正確さ, 速さ, 更新労力で住所を知りたい
- ② システム方式設計(外部設計)
 - ▶ (教員が与えた) データはテキストファイルで. Linux で動く, インター ネットで通信するサーバクライアントシステムで.
- ③ ソフトウェア要件定義(外部設計)
 - ▶ クライアントは, メニューベースで, こういう機能を選択できるように.
- ソフトウェア方式設計 (内部設計)
 - ▶ サーバとクライアントに分割, データ検索は zip.c で別モジュール.
- ソフトウェア詳細設計(プログラム設計)
 - ► モジュール分割 (→ 別チームに任せられる)を含む. その界面の定義.
 - ▶ こういうプロトコルで (Excel の設計書).

大規模ソフトウェア開発手順 II

- ▶ LSearch は何を引数にとり, 何を返す. zipdataS はどういうフォーマット. ZIP 構造体の定義. (zip.h とドキュメント)
- ソフトウェア構築 (プログラミング)
 - ▶ サーバ/クライアントの main を書く. LSearch を書く. デバッグする.

ウォーターフォールと言われる古典的開発手法では, 上から下へ (<mark>上流工</mark>程から下流工程へ)1 段階ずつ進む.

この後に $\frac{}{r}$ ストと言われる工程があるが、下流から上流に遡るように進む.

ユーザが使い始めてから, 保守を行う.

うまくソフトウェアを開発する方法を整備すること, はソフトウェア工 学という 1 個の学問領域.

ソフトウェアテスト (検証)

- システムテスト
 - ▶ 全体を結合してシステムが正しく機能するか確かめる.
- 結合テスト
 - ▶ 本物の親と子を使って、親の外側から見て正しく機能するか確かめる.
- 単体テスト (ユニットテスト)
 - ▶ リクエストに対して LSearch を正しい引数で呼び出している
 - ▶ LSearch が正しい値を返す
 - ▶ ダミーの親 (ドライバ) で子を, ダミーの子 (スタブ) で親をテストしておく.

上流工程:ユーザ側 ↑

下流工程:コンピュータ側

満たすべき性質を, この引数を与えるとこの返り値, のリストとしてあらかじめ与えておく.

ここでいうテストとは、学力試験や検定や試行のことではない.

呼ばれる側 (関数) の単体テストに使うドライバの例

main.c

```
#include <stdio.h>
#include "zip.h"
/* 略:data の準備 */
int main() {
/* 略:data の準備 */
printf("%d", LSearch(data, 100, 5202145));
return 0;
}
/* 開発中の LSearch をテスト*/
```

呼ぶ側 (main) の単体テストに使うスタブの例

zip.c

```
#include <stdio.h>
   #include "zip.h"
3
   int LSearch(ZIP data[], int ndata, int key){
4
     int i:
5
      if ( ndata > 0 \&\& key < = 99999999 \&\& key > = 0){
6
        i=ndata-1:
7
        return i:
8
      } else {
        fprintf("out_of_range.");
10
        exit (1);
11
12
13
```

ソフトウェア開発と職種

業種 (会社): 情報, ソフトウェア, 通信, 製造, ...

職種(人): PG, SE, 営業, ...

- 日本ではソフトウェア構築より上を担当する技術者を SE(システムエンジニア), (ソフトウェア詳細設計や) ソフトウェア構築を担当する技術者を PG(プログラマ) という職種名で呼ぶことが多い.
- SE 担当部分の中でも最上流を担当する場合, お客さんのアバウトな 希望や困りごとを聞いて, 「こういうシステムで解決できます」など と提案することになる.

ソフトウェア開発とチームとキャリアプラン

- 案件ごとに、プロジェクトマネージャに率いられた数人から数十人の チームで行われることが多い。
- SE(... エンジニア, ... エンジニア, ...), プログラマ, テスター, デザイナ, 事務担当, ...
- プロジェクトマネージメントはそれ自身が経営学のひとつの研究 対象。

技術者は、経験を積むとともに、下流から上流に移動していくことが多い、 プログラマ的な仕事をする SE \to 下流担当 SE \to 上流担当 SE \to プロジェクトマネージャ

そういう仕組みの外で高収入で, 尊敬されてやっていく情報技術者もいる. 建築会社に対して, 宮大工や彫刻家やカリスマ建築家のようなもの. システムコンサルタント, フリーランスプログラマ.

大学と就職活動でのグループワーク

就職活動 (教員を含む) では, その場で集まったメンバーで, 何々を作成しる, 何々について話し合って結論を出せ, と言われて, 採用担当者がその様子をじっと観察している, ということが起きる. リーダー (議長), タイムキーパー, 記録係, などの役目を臨時で決めることがよく行われる.

ソフトウェア開発と仕様

ソフトウェアの製品には形がないので, 簡単な指定はできない. 発注者と提供者 (=お客さんとソフトウェア会社, main の担当者と LSearch の担当者) の間で, 提供者の責任を明らかにしておくことが必要. 詳細な仕様書が作られる.

- 「3cm×2cm×100cm の檜の角材 10 本」
- 「使いやすいポータル作って」
- 本システムは…と…の機能を有する. …は…

今回のチームプロジェクトでめざすこと

各自のチーム活動スキルの課題を発見するために, 次回にチーム内で相互評価を行います. 成績には無関係, 匿名, (教員と本人以外に) 非公表.

	NA NA	1	2	3	4	5
チームの作業進行	評価対象に なるがった.	自分の担当 部分を実行 しない.	自分の担当 部分を担当 する. のいて 部分いて 説 明する.	2 に加え, チーム全体 の効果進行に で業でで する.	2,3 に加え, 異なる提案 の間を調整 する.	2,3,4 の間に 加バスが、か出し、 アンボッカンボック でに でに でに でした。
プログラム の仕様と機 能と構築に ついニケー ション	評価対象に なる機会が なかった.	質問や説明 をしない.	本人にとっ て疑問なこ とを質問す る.	本てとるらた明をに問質相めきる。 求とすかれ説	質問や説明 が必に自分 がに自り がいら質問 がら が が が が が が の の の の の の の の の の の の	質がきの慮やる 問必に状し説 いに状し 説なきを質を も いる も の の に が の の に が り の の の の の の の の の の の の の の の の の の
説明方法	評価対象に なる機会が なかった.	説明しない.	不確かなま ま説明する.	知っている ことについ て正しく説 明する.	知こて明らは示てのすいつく、こを持範をいいつく、こを持範をいれてる報いれてる報い。	聞き も も も も も も も も も も も も も

ルーブリック評価

お知らせ

- 樋口オフィスアワー月 3.5 − 4.5(1-502), 金 4(1-502)
- L15 の最初でも非参照のテストやります
 - ▶ ソフトウェア開発について. 予告しにくいので Learn Math Moodle の 予習問題から察してね
- 基本情報技術者 プログラミングだけでない情報技術の資格. 3 年生 の春に合格可能. 申込期限:2018-02-19, 試験:2018-04-15(日). https://www.jitec.ipa.go.jp