固有周波数と固有モード

樋口さぶろお

龍谷大学理工学部数理情報学科

現象の数学 B L06(2011-11-01 Tue)

今日の目標

① 連成振動の固有周波数, 固有モードとは何か, 説明できるようになろう.
② 連成振動の運動方程式が与えられたときに, 固有周波数, 固有モードを求められるようになろう.
略解:
微分方程式は

\[x''(t) = -K x(t), \quad K = \begin{pmatrix} 6 & 4 \\ 1 & 6 \end{pmatrix}, \quad x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \]

とかける。
\(K^t \) の固有値は, \(\lambda = 4, 8 \). 対応する固有ベクトルを \(v_1, v_2 \) とすると, 基準座標は \(X_1(t) = v_1 \cdot x(t) = x_1(t) - 2x_2(t), \)
\(X_2(t) = v_2 \cdot x(t) = x_1(t) + 2x_2(t) \) である.
与えられた微分方程式から \((1) - 2(2), (1) + 2(2) \) を作ると, 微分方程式は
分離され, \(X_1''(t) = -4X_1(t), \quad X_2''(t) = -8X_2(t) \)
略解： 微分方程式は次のようにかける。

\[x''(t) = -Kx(t), \quad K = \left(\begin{array}{cc} \frac{4}{2} & -1 \\ -7 & \frac{4}{2} \end{array} \right), \quad x(t) = \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right) \]

\(\text{基準座標} \) \(X_1 = v_1 \cdot x = x_1 + x_2, \)
\(X_2 = v_2 \cdot x = 2x_1 + x_2 \) を考える。与えられた微分方程式から (1)+(2), 2(1)+(2) を作ると, \(X_1'' = -6X_1, \)
\(X_2'' = -5X_2 \) となり, これを解いて,
\(X_1(t) = A_1 \cos(\sqrt{6}t - \theta_1), \quad X_2(t) = A_2 \cos(\sqrt{5}t - \theta_2) \).

\[x_1(t) = X_2(t) - X_1(t) = -A_1 \cos(\sqrt{6}t - \theta_1) + A_2 \cos(\sqrt{5}t - \theta_2) \]
\[x_2(t) = 2X_1(t) - X_2(t) = 2A_1 \cos(\sqrt{6}t - \theta_1) - A_2 \cos(\sqrt{5}t - \theta_2) \]

\(A_1, A_2, \theta_1, \theta_2 \) は任意定数. これらを初期条件から定めると,

\[x_1(t) = -5 \cos(\sqrt{6}t) + 7 \cos(\sqrt{5}t) \]
\[x_2(t) = 10 \cos(\sqrt{6}t) - 7 \cos(\sqrt{5}t) \].

先週の微分方程式の解をベクトルで書こう

先週の微分方程式を考える。

\[\mathbf{x}''(t) = -K \mathbf{x}(t), \quad K = \begin{pmatrix} 5 & -8 \\ -2 & 5 \end{pmatrix}, \quad \mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}. \]

\(K^t \) の固有値 \(\lambda_1 = 1^2, \lambda_2 = 3^2 \)、固有ベクトル \(\mathbf{v}_1 = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \)。

は

\[X_1(t) = x_1(t) + 2x_2(t) = C_1 \cos(t - \theta_1), \]
\[X_2(t) = x_1(t) - 2x_2(t) = C_2 \cos(3t - \theta_2). \]

よって、

\[x_1(t) = \frac{1}{2}(X_1(t) + X_2(t)) = \frac{1}{2}C_1 \cos(t - \theta_1) + \frac{1}{2}C_2 \cos(3t - \theta_2) \]
\[x_2(t) = \frac{1}{4}(X_1(t) - X_2(t)) = \frac{1}{4}C_1 \cos(t - \theta_1) - \frac{1}{4}C_2 \cos(3t - \theta_2). \]

ベクトル \(\mathbf{x}(t) \) を使うと
\[x(t) = C_1 u_1 \cos(\theta_1 t) + C_2 u_2 \cos(3\theta_2 t) \]

と書く。\(C_1, C_2, \theta_1, \theta_2 \) は任意定数。ベクトル \(u_1 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{4} \end{array} \right) \), \(u_2 = \left(\begin{array}{c} \frac{1}{2} \\ -\frac{1}{4} \end{array} \right) \).
一般に,

\[x''(t) = -Kx(t), \]

という方程式には, さっきの例と, 基準座標のやり方から,

\[x(t) = g(t, \theta) = u \cos(\omega t - \theta) \]

というタイプの解がありそう. \(\theta \) は任意. \(u = (\frac{a_1}{a_2}) \), \(\omega > 0 \) は何か決まった数.
この解 \(g(t, \theta) \) (固有モードという) をもっと直接に楽に求めよう.
\(x(t) = u \cos(\omega t - \theta) \) を代入 (\(u, \omega \) は文字のままにしておくけど後で決める).

\[x''(t) = -Kx(t) \]

\[-\omega^2 u \cos(\omega t - \theta) = -Ku \cos(\omega t - \theta)\]
\[-\omega^2 \mathbf{u} = -K \mathbf{u}\]

\(\omega\) と \(\mathbf{u}\) を決めたかったんだけど、

\(\omega^2\) は

\(\mathbf{u}\) は

とわかった。

先週の例では, 2 × 2 行列だから固有値, 固有ベクトルは2つずつ
\(\omega^2 = \lambda = 1, 9\), \(\mathbf{u} = (\frac{2}{1}), (\frac{2}{-1})\). 2つの固有モード \(\mathbf{g}^{(1)}(t, \theta_1), \mathbf{g}^{(2)}(t, \theta_2)\) がある。

\[
\mathbf{g}^{(1)}(t, \theta_1) = (\frac{2}{1}) \cos(t - \theta_1), \quad \mathbf{g}^{(2)}(t, \theta_2) = (\frac{2}{-1}) \cos(3t - \theta_2)
\]

線形微分方程式だから線形結合も解。一般解はその線形結合。

\[
\mathbf{x}(t) = C_1 \mathbf{g}^{(1)}(t, \theta_1) + C_2 \mathbf{g}^{(2)}(t, \theta_1)
= C_1 (\frac{2}{1}) \cos(t - \theta_1) + C_2 (\frac{2}{-1}) \cos(3t - \theta_2)
\]

\(C_1, C_2, \theta_1, \theta_2\) は任意定数。
次の微分方程式を考える。

\[x''(t) = -K x(t) \quad K \text{ は } 2 \times 2 \text{ 行列} \]

物体 2 個の場合の固有モードによる一般解

\[x(t) = \sum_{\ell=1}^{2} C_\ell g^{(\ell)}(t, \theta_\ell). \]

ここで、

- 固有モード \(g^{(\ell)}(t, \theta_\ell) = u_\ell \cos(\omega_\ell t - \theta) \)
- 固有周波数 \(\omega_\ell \) (\(\lambda_\ell = \omega_\ell^2 \) が \(K \) の固有値)
- \(u_\ell \): \(K \) の固有ベクトル。
- \(C_\ell, \theta_\ell \) は任意定数。

固有周波数, 固有モードは, \[\square \] と同じ数だけ (いまは 2 個) ある。
問題 (連成振動の固有モード)
次の 1 のうち、物体番号 1 に対応するのはどれ (何個でも)?

1. x_1
2. X_1
3. C_1
4. u_1
5. θ_1
6. $g^{(1)}$
7. $(u_1 = (a_1, a_2))$ の a_1
4つの独立な解, という言い方
加法定理を使うと,

\[x(t) = C_1 u_1 (\cos \omega_1 t \cos \theta_1 + \sin \omega_1 t \sin \theta_1) \]

\[+ C_2 u_2 (\cos \omega_2 t \cos \theta_2 + \sin \omega_2 t \sin \theta_2) \]

\[= A_1 u_1 \cos \omega_1 t + B_1 u_1 \sin \omega_1 t + A_2 u_2 \cos \omega_2 t + B_2 u_2 \sin \omega_2 t. \]

という 4つの独立な解の線形結合とも思える.
2 变数, 2 階だから 4 個の任意定数.

これ物理数学 II, 数理モデル基礎 I でやってたのの進化バージョン
よく, \[x(t) = e^{\lambda t} \] とおいてみて \(\lambda \) を決める, ってやってたでしょ.
今の場合,

\[x(t) = u \cos(\omega t - \theta) = u \frac{1}{2} (e^{i \omega t - i \theta} + e^{-(i \omega t - i \theta)}) = u (A e^{i \omega t} + B e^{-\omega t}) \]

・ \(\lambda \) と \(\omega \) は \(i = \sqrt{-1} \) 倍違うだけ.
・ 以前は定数倍は気にしてなかったけど, 今回は \(u \) も決める.
固有周波数, 固有モードを経由した連成振動の解き方

1. K の固有値 ω^2, 固有ベクトル $\mathbf{u} = (\begin{array}{c} a_1 \\ a_2 \end{array})$ を求める (各 2 個ある).
2. 固有周波数 ω, 固有モード $g(t, \theta) = \mathbf{u} \cos(\omega t - \theta)$ を作る (各 2 個ある)
3. 2 個の固有モードの線形結合

$$x(t) = \sum_{\ell=1}^{2} C_{\ell} g^{(\ell)}(t, \theta_\ell)$$

が一般解.
4. 初期条件から, $C_1, C_2, \theta_1, \theta_2$ を決める.

近未来に考えること: 固有モードと基準座標の関係.
問題 (連成振動の基準座標と固有モード)

連成振動について、間違っているものの番号を (何個でも) 答えよう。

① 基準座標と固有モードの個数は同じ
② 固有周波数と、基準座標の単振動の周波数は同じ
③ 基準座標に出てくる固有ベクトルと固有モードに出てくる固有ベクトルは同じ
④ 基準座標も固有モードも時間 t に依存する
⑤ 基準座標はベクトル
⑥ 固有モードはスカラー
問題 (連成振動の固有周波数, 固有モード)
連成振動を表す x_1, x_2 についての微分方程式系

$$
\begin{align*}
x''_1 &= -2x_1 + 2x_2 \\
x''_2 &= -x_1 - 5x_2
\end{align*}
$$

の固有周波数, 固有モードを, さらに一般解を求めよう．

問題 (連成振動の固有モードを用いた解法)
連成振動の運動方程式

$$
\begin{align*}
x''_1 &= -3x_1 - 2x_2 \\
x''_2 &= -2x_1 - 3x_2
\end{align*}
$$

の固有周波数と固有モードを求めて, 初期条件

$$
x_1(0) = x_2(0) = 0, \quad x'_1(0) = x'_2(0) = 3 \quad \text{のもとで解こう．}
$$
今日の範囲に対応する教科書のお奨め問題

今日の範囲に対応する教科書のお奨め問題

今日の範囲に対応する教科書のお奨め問題

今日の範囲に対応する教科書のお奨め問題

発音の連成振動 小形 2 章演習問題 [1](p.38)
発音の連成振動 小形 2 章演習問題 [2](p.38)
二重振り子の連成振動 小形 2 章演習問題 [10](p.39)
LC 回路の連成振動 小形 2 章演習問題 [11](p.14)

次回の予習ポイント

三角関数の和積公式

予習復習問題 水曜日の昼から月曜夜までに e ラーニングシステムでやってね～
プチテストやります！

日時 2011-11-15 火 3, 90 分．
場所 いつもと同じ
配点 100 点が 30 ピーナッツ．
参照 なし．

公欠 基準と届が独自です．Web ページの病欠・公務欠席等の届出とそれを考慮する（しない）方法参照．

出題計画 未確定です．2011-11-08 火の授業で修正+詳細化される予定です．

- 物体 1 個, ばね 1 個または複数のときに運動方程式を立てよう (L01,L02)
- 物体 1 個, ばね 1 個または複数のときに運動方程式を解こう (L01)
- 式から単振動の正確なグラフを描き振幅, 周期, 周波数を答えよう (L02)
- ばねとは限らない力について, 安定, 不安定な平衡点を見つけよう．(L03)
- 安定な平衡点の近くでの微小振動の周波数, 周期を求めよう (L03)
- 物体 2 個, ばね複数のときに運動方程式を立てよう (L04)
- 物体 2 個, ばね複数のときに基準座標を求めて運動方程式を解こう (L05)
- 物体 2 個, ばね複数のときに固有周波数, 固有モードを求めて運動方程式を解こう (L06)
- ??(L07)
- ??(L07)
模範解答を作ろうプロジェクト！で最大5ピーナッツゲット！

現象の数学Bの問題の模範解答を作ってみんなで共有するプロジェクトです。

eラーニングシステム → 現象の数学B → 模範解答を作ろうプロジェクト！

に投稿されている問題に対して，模範解答を紙に作成して，スキャンしたものをフォーラムに返信してください。
自宅のスキャナや，理工学部実習室1-612（おすすめ）や，3号館地下第2セルフラーニング室でスキャンできます。
http://www.a.math.ryukoku.ac.jp/~hig/info/teaching/scanner.php

・貢献に対して1問あたり最大5ピーナッツ，1人あたり最大5ピーナッツの加算があります。
・最初の解答が完璧でなかった場合，投稿した人，または他の人が修正したものを再投稿することができます。
・最終的な完璧な答えを投稿した人よりも，各難関ポイントを解決して貢献した人を評価してピーナッツを決定します。 何人かの貢献で1問の最終的な答えが完成したら，5ピーナッツがその人々に分配されます。
・また，独立に作成した投稿でも，同じ内容なら，一番最初に投稿したのみを評価します。
・問題はときどき追加します。フォーラムの右側ブロックで，‘このフォーラムをメール購読する’を選択すると，問題が公開されたときにメールで通知されます。