量子力学 [演習問題(第5回)

樋口 さぶろお*

1996年5月9日

[5-1] 演算子の表現行列

 $\psi(0)=\psi(L)=0$ の課せられた 1 次元空間 $0\leq x\leq L$ に自由粒子が閉じ込められている. 規格化された波動関数の族

(1)
$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} \quad (n = 1, 2, 3, ...)$$

を考える.

- 1. 自由粒子の Hamiltonian の表現行列 $\langle \psi_m | p^2/2m | \psi_n \rangle$ を求めよ.
- 2. 運動量演算子の表現行列 $\langle \psi_m | p | \psi_n \rangle$ を求めよ.
- 3. 座標演算子の表現行列 $\langle \psi_m | x | \psi_n \rangle$ が非対角成分を持つことを示せ.

[5-2] 調和振動子

位置, 運動量演算子をそれぞれ x,p ($[x,p]=i\hbar$, あるいは $p=-i\hbar\frac{d}{dx}$ と思ってもよい) とするとき, 調和振動子の Hamiltonian は,

(2)
$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

である $(m, \omega \in \mathbf{R})$. 昇降演算子 b, b^{\dagger} を

(3)
$$b = \sqrt{\frac{m\omega}{2\hbar}}(x - (im\omega)^{-1}p)$$

$$(4) b^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}(x + (im\omega)^{-1}p)$$

と定義する(これらは互いに Hermite 共役である).

- 1. 式 $H = \hbar \omega b^{\dagger} b + \hbar \omega / 2$ を示せ (x, p) が非可換であることに注意).
- 2. 交換子 [b, b[†]] を求めよ.

^{*}Internet address: hig@rice.c.u-tokyo.ac.jp URL: http://rice.c.u-tokyo.ac.jp/~hig/,へや: 駒場 4 号館 413B(学生室の隣) 氷上研究室, でんわ: (03)54.54.67.35

- 3. Hermite 演算子 $b^{\dagger}b$ の、固有値 a の規格化された固有状態を $|\phi_a\rangle$ とするとき、 $b^{\dagger}|\phi_a\rangle = \sqrt{a+1}|\phi_{a+1}\rangle$, $b|\phi_a\rangle = \sqrt{a}|\phi_{a-1}\rangle$ を示せ (規格化条件に注意).
- 4. 期待値 $\langle \phi_0 | x | \phi_0 \rangle$, $\langle \phi_0 | x^2 | \phi_0 \rangle$ を求めよ (Hint: x を b, b^{\dagger} でかく. 途中で Hermite 演算 子の固有状態の直交性を使う.).

[5-3] 完全性

波動関数の族 $\{\alpha_n\}_{n\in\mathbb{N}}$ を正規直交系とする. 族 $\{\alpha_n\}_{n\in\mathbb{N}}$ が完全系をなすとは, 任意の波動関数 ϕ が, ある係数 a_n により

(5)
$$\phi(x) = \sum_{n=1}^{\infty} a_n \alpha_n(x)$$

と展開できることであった。

1. Bra, ket の記法を用いたとき、波動関数の族 $\{\alpha_n\}_{n\in\mathbb{N}}$ が完全系をなすことと、式

(6)
$$\sum_{n=1}^{\infty} |\alpha_n\rangle \langle \alpha_n| = 1$$

が成立することが同値であることを示せ.

Hint. 式 (5) で $a_n = \langle \alpha_n | \phi \rangle$ となる.

2. 完全性が

(7)
$$\sum_{n} \alpha_{n}^{*}(x)\alpha_{n}(x') = \delta(x - x')$$

とも同値であることを示せ、

Hint. 式 (6) に近い.

3. 波動関数の族 $\{|\phi_n\rangle\}_{n\in\mathbb{N}}$, $\{|\psi_n\rangle\}_{n\in\mathbb{N}}$ をそれぞれ正規直交完全系とするとき,複素行列 $U_{mn}=\langle\psi_m|\phi_n\rangle$ は unitary であることを示せ.

参考文献

- [1] 中嶋, 吉岡, 例解 量子力学演習, 物理入門コース / 演習 3 (1991) 岩波書店.
- [2] 中嶋, 量子力学 II, 物理入門コース 6 岩波書店.
- [3] L. I. Schiff, Quantum Mechanics, 3rd edition, McGraw-Hill (1968). 訳書は吉岡書店.
- [4] J. J. Sakurai, Modern Quantum Mechanics, Benjamin (1985). 訳書は吉岡書店.